3-D phononic crystals with ultra-wide band gaps
نویسندگان
چکیده
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.
منابع مشابه
Soft phononic crystals with deformation-independent band gaps
Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be th...
متن کاملTunable phononic crystals with anisotropic inclusions
We present a theoretical study on the tunability of phononic band gaps in two-dimensional phononic crystals consisting of various anisotropic cylinders in an isotropic host. A two-dimensional plane-wave expansion method was used to analyze the band diagrams of the phononic crystals; the anisotropic materials used in this work include cubic, hexagonal, trigonal, and tetragonal crystal systems. B...
متن کاملColloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure
Colloidal nanocrystals consist of an inorganic crystalline core with organic ligands bound to the surface and naturally self-assemble into periodic arrays known as superlattices. This periodic structure makes superlattices promising for phononic crystal applications. To explore this potential, we use plane wave expansion methods to model the phonon band structure. We find that the nanoscale per...
متن کاملTopology optimization of 2D phononic band gap crystals based on BESO methods
1. Abstract: Phononic band gap crystals, which could prohibit the propagations of elastic waves in certain frequency, are consisted of periodically distributed inclusions embedded in a matrix with high contrast in mechanical properties. In recent years, systematic design of phononic band gap crystals has attracted increasing attention due to their wide applications such as sound insulation, wav...
متن کاملFormation of Bragg Band Gaps in Anisotropic Phononic Crystals Analyzed With the Empty Lattice Model
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowes...
متن کامل